
Real{Time Tra�c Simulation

of the

German Autobahn Network

M. Rickert

a;b

, P.Wagner

a

, Ch. Gawron

a

a

Center Of Parallel Computing, University Of Cologne, Germany

b

TSA-DO/SA, Los Alamos National Lab, USA

This work is part of our ongoing e�ort to design and implement a tra�c simulation

application capable of handling realistic problem sizes in multiple real{time. A

16{CPU SGI Power Challenger o�ers real{time for the whole German Autobahn

network. On a workstation cluster we have reached multiple real{time for the

Autobahn network of the state Nordrhein{Westfalen. In this paper we present the

parallel architecture and techniques used in our implementation. We also give an

upper-bound estimate for the scaling behavior of this type of simulation.

1 Introduction

Over the last decade the phenomenon of individual vehicular tra�c has become

more and more important since transportation is one of the basic conditions for

economic wealth. The number of vehicles, however, has increased so quickly

that disadvantages start to outweigh the bene�ts. Tra�c not only causes no-

ticeable damage to the environment it also causes billions in losses through

delayed transport of goods and people. That is why there is an increasing

demand for tools capable of realistic tra�c simulation. Conventional appli-

cations, however, usually fail to reproduce the phenomena found in real life

tra�c because either (a) the resolution of the simulation is not �ne enough or

(b) the considered area is too small.

Only high-end parallel computer architectures in conjunction with high-speed

physical methods (e.g. cellular automata) deliver the computational perfor-

mance necessary to tackle these problems.

This work is part of our ongoing e�ort of the project \Nordrhein{Westfalen Re-

search Cooperative Tra�c Simulation and Impacts on the Environment (NRW{

FVU)"

1

to design a 
exible, high{performance simulation tool for vehicular

tra�c. The problem size was given by the current Autobahn network (called

\map FRG") of Germany which amounts to approximately 75,000 kilometers

of road lane. Estimating an average occupancy of 10% results in 1,000,000

vehicles, each following an individual route plan during the simulation. We

also used the Autobahn network of Nordrhein{Westfalen (called \map NRW",

1



a sub{set of the latter) with approximately 11,500 kilometers road lane at an

occupancy of 5% with 78,000 vehicles.

The tra�c model used in this implementation was developed by Nagel and

Schreckenberg

2

as a single lane version and later extended by Rickert, Nagel,

Schreckenberg, and Latour

3

to a multi-lane version. Rickert

4

implemented a

parallelized tra�c simulation using cellular automata (CA) techniques running

multiple real{time for the German Autobahn network on an Intel Paragon.

This simulation, however, was not capable of executing individual route-plans,

but used turning probabilities at intersections instead. Moreover it did not

include dynamic load balancing. Nagel

5

used a two CPN

a

topology to run a

parallel net simulation using individual route-plans with a single lane CA.

A more detailed description of the microsimulation presented here can be found

in

6

. It includes a summary about how the classical CA model is extended to

include street network elements (e.g. ramps, intersections) and route-plans

which are necessary in many �elds of applied tra�c research.

Several other research groups are currently involved in large-scale tra�c sim-

ulation projects. The TRANSIMS

7 8

group at the Los Alamos National Lab

uses a modi�ed version of the Parallel Toolbox

15

to simulate large urban ar-

eas, resolved down to individual intersections on workstation clusters. The

PARAMICS

9 10

group in Edinburgh (EPCC) simulates the whole federal road

network of Scotland on a Cray T3D (512 DEC Alpha nodes).

In the remaining part of this section we present some basic aspects of tra�c

simulation and describe the underlying CA model of tra�c 
ow. In section 2

we outline the parallel implementation scheme of our application, which will

be followed by some remarks out the parallel environment. We conclude by

presenting the benchmarks for two computer hardwares (section 4) and some

performance estimates for larger numbers of CPN (section 5).

1.1 Tra�c Simulations

Generally, all road tra�c simulation models can be classi�ed into microscopic

or macroscopic (
uid-dynamical) models.

The microscopic (high-resolution) simulation uses individual cars, each of them

equipped with a route-plan to be followed. Their dynamics are modelled on

very di�erent levels of �delity

b

. One of the most detailed models uses a com-

a

Computational Node: a general term for one unit of a large computer system solving a

part of a distributed parallel problem.

b

In this context �delity is often used as a synonym for accuracy.

2



plicated delay di�erential equation for every car

11

, in which the acceleration

of the car depends on the distance and velocity di�erence to the car ahead.

Although such models perform nicely when compared to measurements, they

are computationally very demanding, and have a large set of parameters to be

adapted to reality.

At the low end of complexity, we arrive at a model in which both space and

velocity are discrete. The dynamics of the cars are reduced to a few simple

rules, which are controlled by a small set of parameters. Models of this kind

are called cellular automata (CA) for tra�c simulation, and can be understood

as a minimalmicroscopic model for simulating tra�c. To have only a small set

of parameters to calibrate a CA turns out to be a tremendous advantage when

coping with more complicated situations such as the lane changing behavior,

where it is di�cult to calibrate the more complicated models

12

.

The macroscopic (low-resolution) models

13

describe the movement of blocks

of cars, according to some rules which utilize the continuity equation, together

with the empirically measured relation between the car density � and 
ow q.

They can be understood as a spatial and time discrete version of a partial

di�erential equation describing a particle 
ow. Macroscopic models are able to

simulate road tra�c on very large networks, e.g. it is possible to simulate the

German freeway network on a single workstation

14

in real-time. Their main

disadvantage, in our view, is their inability to handle a large number of route

plans. So, any investigations which rely on route-plans, such as in telematics

applications, cannot be done.

Based upon the considerations made above, we think that the microscopic

modeling is the most natural way to simulate road tra�c.

1.2 Tra�c Simulation using CA

Let us brie
y summarize, how to simulate tra�c

2

. Space, time and velocity are

discrete, each cell is either occupied by a car or is empty. The length of a cell

is 7:5 [m], which is interpreted as the length of a car plus the gap between cars

in a tra�c jam. One time-step corresponds to 1 [s], which is of the order of the

reaction time of humans. Velocity ranges from 0; : : : ; v

max

= 5, corresponding

to a maximum velocity of approximately 120 [km=h].

3



10

20

30

40

50

60

70

80

90

100

110

120

0 500 1000 1500 2000 2500 3000

v 
[k

m
/h

]

flow [cars/(h*lane)]

data

20

40

60

80

100

120

140

0 200 400 600 800 1000 1200 1400 1600 1800

ve
lo

ci
ty

 [k
m

/h
]

flow [cars/(h*lane)]

simulation

Figure 1: Left: Measured fundamental diagram. Data are from a Californian highway.

Right: Simulated fundamental diagram. Data are a combination of di�erent �-values.

Let n denote the current time-step, (�x)

n

the front bumper to front bumper

distance between the car we are looking at and the car ahead, and let v

n

, x

n

be the current speed and position, respectively. We obtain the following set

of rules, which are updated in parallel for all vehicles:

v = min(v

n

+ 1; (�x)

n

� 1; v

max

); (1)

v

n+1

=

�

max(0; v � 1) with probability p

brake

v otherwise

; (2)

x

n+1

= x

n

+ v

n+1

: (3)

The �rst rule summarizes the interaction between two cars and their tendency

to drive at maximum speed, while there is no other car ahead. The interaction

is constructed to avoid any accident. The second rule accounts for di�erent

kinds of inaccuracy in human driving behavior, making the model a stochastic

CA. The third rule simply advances the cars v

n+1

sites.

The original model works with one maximum velocity only. However, it is

simple to introduce a distribution of velocities and di�erent car types (e.g.

trucks).

Despite its simplicity, the model yields quite realistic behavior. It describes the

spontaneous generation of tra�c jams, it produces space-time plots of tra�c


ow, which look very similar to aerial views of real tra�c, and it yields realistic

fundamental diagrams. A fundamental diagram is the graphical representation

of the relation between average local speed hv

l

i and 
ow q. An example is

shown in the two plots of �gure 1, where it is di�cult to distinguish between

the simulated and the measured fundamental diagrams, showing that the CA

is capable of reproducing the observed macroscopic behavior.

4



Even in more complicated situations the CA-model exhibits remarkably re-

alistic behavior. Examples are the mixing or weaving of two tra�c 
ows or

the lane changing behavior of the model. We have found a set of rules, which

leads to the correct lane-usage behavior: on German freeways, the left lane

has a higher occupancy than the right lane, even for moderate values of the


ow. This behavior can be reproduced with the CA-model. More details can

be found in

13

.

2 Parallel Architecture

The tra�c network is associated with a graph of vertices and edges. Nodes rep-

resent network elements like network terminators

c

, ramps, and intersections.

Edges represent open road segments.

We use a straightforward SIMD master slave architecture with a geometrical

distribution of the graph. The simulation is designed for computer topologies

with distributed memory and message passing, even though one architecture

used in our benchmarks is a native shared memory architecture. All control

functions necessary for parallel execution as well as the load balancing are

handled by the Parallel Toolbox

15

developed by one of the authors.

2.1 Master and Slave Functionality

On a computer hardware with p CPN the simulation is started as a single-

CPN application representing the master, which reads the road network data

and performs the initial distribution of all graph elements (vertices and edges).

Afterwards the master will spawn p � 1 slave-processes using library calls of

the communication library PVM

16

. At that time, all elements only exist in

an inactive state, which is to say that only the elements themselves have been

instantiated, but no secondary data (e.g. CA grids for edges and intersection

control for vertices) is associated with them. All slaves receive a copy of their

respective sub-networks plus some neighboring vertices of inter{CPN edges

(see �g. 2). Note that the master also performs all actions of a slave and thus

will receive a sub-network of its own.

As the last step of the initialization phase, the master broadcasts an activation

message prompting the slaves to activate the network elements by creating

secondary data. The master will keep an inactive representation of the whole

network (mainly for graphics and global statistics), which results in slightly

c

physical boundaries of the road network in contrast to logical boundaries between CPN

5



CPN 2

CPN 3

CPN 4

CPN 1
CPN 2

CPN 1

network on master network on slave CPN1

CPN 4

(in)active vertex

edge

vertex representing CPN

inter CPN edge

CPN boundary

communication chanel

Figure 2: Global and local sub{networks

increased memory requirements.

2.2 Initial Distribution

Based on the Euclidean coordinates of the network elements we perform an

iterative orthogonal recursive bisection of the vertices onto the available CPN.

The weights (by which the vertices are bisected) are computed by assigning

each vertex with half of the weights of its incident edges, which are estimated

to be proportional to the Euclidean lengths of the edges. Fortunately the

simulation speed of the CA model only exhibits a weak dependency on the

vehicle density. Over the density range 0:01 : : :0:3 the time required to perform

one million updates only varies by a factor of two (see �g. 3 which was obtained

from simulation runs of an excerpt of the NRW map).

For the time being, the assignment of sub-networks to CPN does not take the

physical communication topology into account, that is, we use a trivial, linear

mapping of sub-networks onto CPN. On the topologies used so far, Ethernet

(Sparc-cluster) and memory bus (SGI), this does not result in a performance

decrease, since all communication channels can be regarded as equivalent.

Also note that due to the fact that CPN can have inhomogeneous performance

6



0

0.5

1

1.5

2

0.0001 0.001 0.01 0.1 1

tim
e 

[s
/M

U
P

]

density

SGI Challenger
Sparc 5

Figure 3: Update-Time versus Vehicle Density

and not necessarily a number of CPN equal to a power of two is used, the

expression 'bisection' is not to be taken literally. In particular we try to split

the number of available CPN, then compute the sum performance of the two

subsets and assign two sub{networks which have the same ratio of estimated

loads as the ratio of performances of the CPN subsets.

We do not put much e�ort into this part, since the dynamic load balancing

compensates for an insu�cient initial distribution.

2.3 Boundaries

Inter{CPN edges exist in two copies on either CPN they refer to (see �g. 4).

They are split in the middle with one half being active on the �rst CPN, the

other being active on the second CPN. Boundaries have a length (measured

in sites) as large as the maximum interaction range of the CA rule set, which

is currently v

max

(or v

max

+ 1 in some cases). They are requested from the

edges on both CPN, encoded and transferred to remote the CPN, where they

are appended to the active range 'faking' an in�nite system to the CA. Note

that the time spent on retrieval, transfer, and storing of boundaries is consid-

erable, compared to a more heterogeneous application which is able to provide

7



boundary boundary

vmax

vmax

remote

vertex inactive range active Range [0.5, 1.0]

active Range [0.0, 0.5] inactive range 

vertex

local

CPN 1

CPN 2

vertex

local

vertex

remote

Figure 4: Inter{CPN edge with boundaries

boundaries as e.g. linear arrays. We will take this extra e�ort into account as

application-level communication (see section 5).

2.4 Simulation Control

The simulation is basically time{step driven since the built-in CA needs all

information of a previous time{step to compute the current one. This results

in boundary communication along inter{CPN edges for each time{step

d

. We

use the boundary exchange to control the timing on each slave. A so called

simulation sequence is executed as follows:

1. The master assumes that all slaves are synchronized at on a (not yet

executed) time-step t

n

.

2. The master initiates a sequence of length s by broadcasting a message

to all slaves. It falls back into slave mode.

3. Each slave sends out boundary information for time{step t

n

to all its

neighbors

e

and then waits for incoming boundaries.

4. After a CPN has received all boundaries from its neighbors, it executes

time{step t

n

. If the end of the simulation sequence has been reached, it

d

In fact we exchange boundaries twice for each time{step since one CA update is split

into two sub steps

e

Two CPN are regarded as neighbors (connected by a communication channel), i� there

is at least one inter{CPN edge between them.

8



sends a message to the master. If not, it continues to send out boundaries

for time{step t

n+1

.

5. As soon as the master has received messages from all slaves acknowl-

edging the end of the simulation sequence, it resumes master mode to

initiate another sequence or to terminate the simulation. Note that at

this time all slaves are synchronized on time step t

n+s

.

2.5 Dynamic Load balancing

Since there is boundary communication before each time{step, it must be the

goal of the dynamic load balancing to equilibrate the execution time of all

CPN. We have implemented a straight-forward local decision, local migration

(LDLM

S

, see

17

) strategy which we will describe next.

Estimating Load

During execution each CPN i uses wall-clock timers to monitor the time t

i

needed to execute one time{step of the local sub{network. Moreover it can

request an estimate l

i

(in arbitrary units) of the load of its local sub{network.

These weights are computed the same way as described for the initial distri-

bution by simply summing over the actual road lengths.

At the same time it receives equivalent information from its neighbors in inter-

vals of t

lb

time-steps, which is used to compute a performance value P

i

= l

i

=t

i

.

CPN i stores those values for a certain period of time t

monitor

, from which it

retrieves the minimum P

min

i

as its safe performance value. A safe work load

for this CPN is thus L

i

= l

i

=P

min

i

, which has the unit of a time period and is

used to determine the load di�erences with respect to its neighbors.

Note that the advantage of using the minimum P

min

i

instead of the current

value P

i

lies in preventing moving load to a CPN that is only temporarily

running idle. CPN that are used interactively show such behavior.

Transferring Load

Whenever there is signi�cantly

f

more load on a CPN i than on one of its

neighbors j, CPN i will try to initiate a transfer of vertices by requesting a

local synchronization with CPN j. The actual amount of load l

t

to be cast o�

f

exceeding a certain prede�ned threshold

9



is computed by comparing the safe work loads L

i

; L

j

and trying to reach equal

execution times t

i

; t

j

on both CPN as follows:

L

i

�

l

t

P

min

i

= t

i

!

= t

j

= L

j

+

l

t

P

min

j

Isolating l

t

and introducing a dampening factor c yields:

l

t

= c

l

i

P

min

j

� l

j

P

min

i

P

min

i

+ P

min

j

The dampening factor c = 1=n

n

< 1 is used to prevent a CPN from receiving

l

t

load units from more than one of its n

n

neighbors. Vertices to be o�oaded

are selected along the common inter{CPN edges until l

t

is reached. To main-

tain well shaped sub{networks those vertices furthest away from the center of

gravity of the sub{network are favored.

Whenever a vertex is o�oaded the local copy either a) falls back into the

inactive state if it still serves as a dummy connected to an inter{CPN edge,

or b) is completely discarded (see �g. 2). The latter is also true for edges that

have been transferred completely.

Despite the fact that in principle each load transfer is restricted to the o�oad-

ing CPN A and the receiving CPN B. There may be other third party CPN

which have to be informed about the transfer. In case a vertex is transferred

that is also used by another third party CPN C there is a chance of incom-

ing boundaries from C which are addressed to A. The receiving inter{CPN

edge, however, now resides on B, so that the boundary has to be forwarded.

Therefore, CPN A handles a list of edges which have been transferred lately.

Timing

In order to spread the communication due to load transfers over the interval

t

lb

the connections between CPN are colored with 4 colors representing time

slots within the l

lb

interval. At the beginning of the simulation all connections

are colored by the master. New connections that are created due to transfers

receive a 
ag denoting an invalid color and preventing any transfer. The CPN

involved try as soon as possible to negotiate a new color which is chosen from

those that are currently not used by either of them. If no such color can be

found an arbitrary color is used.

10



3 Environment

We use C++ as an object oriented programming language for our implemen-

tation. The parallelization is handled by a toolbox which supplies base classes

for vertices and edges, as well as slave and master control objects. The tra�c

microsimulation itself is de�ned by supplying descendant objects overwriting

virtual class methods. The toolbox uses PVM as a message passing library.

3.1 Parallel Environment

The simulation should operate on all machines that support both PVM and

a current version of GNU C++. We have successfully ported the simulation

to the architectures SGI5, SGI64, SUN4, SUN4SOL2, and LINUX. The RS6K

architecture only works without optimization. The shared memory versions

SGIMP64, SUNMP, and ALPHAMP as well as the dedicated version for the

Intel Paragon PGON can be built, but need further debugging.

3.2 Fault Tolerance

The simulation does not provide any protection against CPN failures, since

there are no redundant copies of data available. However, the current design

o�ers

g

the option to dynamically add or remove CPN on the 
y. The toolbox

will automatically switch between raw encoding for CPN topologies with ho-

mogeneous binary data representation and XDM encoding for heterogeneous

topologies.

Adding a CPN

The PVM shell allows to interactively add a new CPN to the parallel machine.

The master is informed by the PVM pvm notify mechanism about this new

resource. It will try to insert the CPN k after termination of the current

simulation sequence as follows:

(1) The master will scan its global load data to �nd the CPN i that is most

heavily loaded. (2) CPN i checks the load of its neighbors and selects the

CPN j which is most heavily loaded. (3) CPN i transfers one seed vertex on

a common boundary with j to k. (4) The master continues as usual.

g

Within the restrictions imposed by PVM, which is to say that the master process can

never be terminated without terminating the whole simulation.

11



Choosing the CPN like this ensures that the new CPN has at least two neigh-

bors inclined to o�oad part of their sub-networks during the upcoming load

balancing intervals.

Removing a CPN

Unfortunately, PVM shell does not permit the removal of a CPN since that

action would terminate the PVM daemon corrupting the application immedi-

ately. Any slave CPN, however, can be removed from the parallel machine as

follows:

(1) After reception of the signal SIGHUP it initiates a forced o�oad of all

vertices except one. (2) It sends a message to the master expressing the wish

to be removed. (3) The master waits until the end of the current simulation

sequence and prompts the CPN to o�oad the remaining vertex. (4) The master

continues as usual. (5) Now, the PVM daemon can be removed using the PVM

shell.

4 Benchmark Results

The simulation was tested on an SGI Power Challenger system with 16 pro-

cessors (Irix 6 with PVM architecture SGI5) and on a workstation cluster

consisting of 12 Sun workstations (Sparc 5 and Sparc 20 under Solaris us-

ing PVM architecture SUN4SOL2). We performed several runs each lasting

between 300 and 600 simulation time-steps. Note that in all cases the best per-

formance was reached after about 100 time-steps (equivalent to about about

15 load-balancing transfers).

In �gure 5 the simulation reaches an equilibrium at a real time ratio of about

1 for map FRG on the SGI with 16 CPN and on the cluster with 12 CPN. For

map NRW a real time ratio of 3.75 can be achieved on a workstation cluster

with 8 CPN.

The e�ciency of all runs was at least 0.85 after the initial load balancing period

(see �g. 6).

5 Performance Analysis

We have made a �rst attempt to deduce an upper-bound for the e�ciency e(p)

of a large scale tra�c simulation running on p CPN. It is based upon a set of

parameters which can be retrieved from simple measurements. We only cite

12



0

0.5

1

1.5

2

2.5

3

3.5

4

0 100 200 300 400 500 600

re
al

-t
im

e 
ra

tio

simulation time-step [1]

SGI 8 CPN (FRG)
SGI 16 CPN (FRG)

SUN cluster 12 CPN (FRG)
SUN cluster 4 CPN (NRW)
SUN cluster 8 CPN (NRW)

Figure 5: Real Time Ratio

0.5

0.6

0.7

0.8

0.9

1

0 50 100 150 200 250 300

ef
fic

ie
ny

 [1
]

simulation time-step [1]

SGI 8 CPN
SGI 16 CPN

SUN cluster 12 CPN (FRG)
SUN cluster 4 CPN (NRW)
SUN cluster 8 CPN (NRW)

Figure 6: E�ciency

13



results here. A more detailed version (including an additional estimate for a

two-dimensional communication topology) can be found in

18

.

Assuming a time of T (1) required for one time-step on a single-node machine,

the necessary input parameters turn out to be:

� the size of the street network (number of edges, number of nodes) re-

sulting in estimates for the number of neighbors N

n

(p) (with an average

number of n

n

(p) per CPN) and the number of boundaries B(p) (with an

average number of b(p) per CPN),

� the number of sub-time-steps n

sub

per time-step causing a relative perfor-

mance loss for administration overhead f

adm

(n

sub

) and additional com-

munication volume,

� the average boundary length b

size

and the boundary message header

size b

header

, the application-level boundary transmission time t

c1

and

transmission latency t

cl

both given as fractions of T (1),

� the low-level communication bandwidthC

net

(measured in byte per T (1))

of the computer network, and

� the relative load gradient f

grad

(p) generated by the granularity of the

street network.

Using these parameters we de�ne four major contributions to the time spent

on one time-step which are plotted in �gures 7 and 8:

� The raw simulation fraction mainly represents the tra�c simulation itself,

although it includes the administrative overhead for multiple sub-time-

steps. It is equivalent with the e�ciency e(p) of the simulation if n

sub

=

const.

� The load-gradient fraction represents the loss of execution time due to

the load gradient which builds up throughout the CPN network. We

assumed a relative exponential gradient of 0.01 per layer.

� The application-level (a-l) communication fraction represents the time

spent on retrieving, coding, transferring, decoding, and storing boundary

data.

� Finally, the low-level (l-l) communication represents the additional time

spent on low-level communication due to the saturation of the underlying

communication network.

14



0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 10 100 1000
number of CPN

raw simulation
load gradient

a-l communication
l-l communication

Figure 7: Sparc-5 Cluster with Ethernet (Bus-Topology)

The overall e�ciency turns out to be

e(p) =

�

n

n

(p)t

cl

| {z }

latency

+ b(p)t

c1

+

N

n

(p)b

header

+ B(p)b

size

C

net

| {z }

bandwidth

+

+

1

p

�

1 + f

adm(n

sub

)

| {z }

overhead

+ f

grad

(p)

| {z }

gradient

�

�

�1

Figure 7 depicts the estimate for a cluster of Sparc 5 workstation connected

by Ethernet. E�ciency quickly drops below 0.5 for 30 CPN due to the net-

work saturation by low-level communication. We used the parameters: over-

all density % = 0:05, T (1) = 13:6[s], c

net

= C

net

=T (1) = 1:0[Mbyte=s],

T

c1

= T (1)t

c1

= 0:62[ms], T

cl

= T (1)t

cl

= 3:64[ms], b

header

= 64[byte], and

b

size

= 118[byte].

Figure 8 shows the same qualitative behavior for the SGI challenger although

an e�ciency of at least 0.5 can still be obtained for up to 100 CPN. We used the

parameters % = 0:1, T (1) = 10:2[ms], C

net

= 5:0[Mbyte=s], T

c1

= 0:31[ms],

T

cl

= 2:16[ms], b

header

= 64[byte], and b

size

= 160[byte].

15



0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 10 100 1000
number of CPN

raw simulation
load gradient

a-l communication
l-l communication

Figure 8: SGI-Challenger with Shared Memory(Bus-Topology)

6 Discussion and Outlook

We have presented a real{time simulation application portable to various par-

allel computer architectures. On the platform SGI we can reach real{time for

a complex street network with 1,000,000 individually routed objects, which

represents a considerable increase of performance compared to conventional

systems.

On the one hand we exploit the simple geometric structure of the given road

network for geometric distribution. On the other hand we have to deal with

the strong time dependence of the sub{graphs making the implementation of

a dynamic load balancing desirable. Note that in the future we will need dy-

namic load balancing not only because of performance 
uctuations imposed

by other users in a workstation cluster, but also by the simulation itself: It

may be necessary to run di�erent parts of the tra�c network at di�erent levels

of �delity depending on what type of output statistics one is interested in. In

that case, the low �delity CA model would be complemented by a | com-

putationally more demanding | high �delity driver model. During run-time

the simulation would switch between these models according to some yet to be

de�ned criteria.

16



So far we have not investigated the parameter space de�ning the load balanc-

ing behavior, like the length of the monitoring period t

monitor

, the threshold

for o�oading, or the dampening factor c. This will be covered in future pub-

lications.

We will also try to integrate message passing and shared memory techniques

into a new toolbox, which will run on hybrid computer systems. This is to

remain independent of the message passing technology which has lost part of

its signi�cance over the last couple of years. Nevertheless, porting the simu-

lation to dedicated machines with a high-end communication architecture will

de�nitely be one of the goals of our group in the near future.

7 Acknowledgements

We thank A. Bachem, R. Schrader and C. Barrett for supporting MR's work as

part of the tra�c simulation e�orts in Cologne (\NRW-FVU") and Los Alamos

(TRANSIMS). We also thank them, K. Nagel, S. Krau� for help and discus-

sions. Computing time on the SGI-1 Challenger of the Regionales Rechen-

zentrum K�oln and on the workstation cluster at TSA-DO/SA is gratefully ac-

knowledged. We further thank all persons in charge of maintaining the above

mentioned machines.

The work of MR was supported in part by the \Graduiertenkolleg Scienti�c

Computing K�oln/St. Augustin".

References

1. URL. http://www.zpr.uni-koeln.de/Forschungsverbund-Verkehr-NRW/.

2. K. Nagel and M. Schreckenberg. A cellular automaton model for freeway

tra�c. J. Physique I, 2:2221, 1992.

3. M. Rickert, K. Nagel, M. Schreckenberg, and A. Latour. Two lane tra�c

simulations using cellular automata. accepted by Physica A, 1995.

4. M. Rickert. Simulation zweispurigen Verkehrs
usses auf der Basis zellu-

larer Automaten. Master's thesis, Universit�at zu K�oln, 1994.

5. K. Nagel. High{speed Microsimulations of Tra�c Flow. PhD thesis,

Universit�at zu K�oln, 1994.

6. M. Rickert and P. Wagner. Parallel real-time implementation of large-

scale, route-plan-driven tra�c simulation. accepted by Int.J.Mod.Phys.

C, 1996.

7. K. Nagel, C. Barrett, and M. Rickert. Parallel tra�c micro-simulation

17



by cellular automata and application for large scale transportation mod-

eling. Technical report, TSA-DO/SA, Los Alamos National Lab, New

Mexico, USA, and Santa Fe Institute, Santa Fe, New Mexico, USA, and

Center for Parallel Computing, University of Cologne, Germany, 1996.

submitted to Transportation Research C.

8. TRANSIMS URL. http://studguppy.tsasa.lanl.gov/.

9. D. McArthur. The PARAMICS Model: Present and Future Directions.

Technical report, SIAS Ltd., Edinburgh, 1994.

10. Paramics URL. http://www.epcc.ed.ac.uk/epcc-projects/paramics/.

11. R.Wiedemann. Simulation des Stra�enverkehrs
usses. Technical Report

Heft 8, Institut f�ur Verkehrswesen der Universit�at Karlsruhe, 1974.

12. M. McDonald and M. A. Brackstone. Simulation of lane usage charac-

teristics on 3 lane motorways. In Proceedings of the 27th International

Symposium on Automotive Technology and Automation (ISATA), 1994.

13. P. Wagner. Tra�c simulation using cellular automata: Comparison with

reality. In Proceedings of the conference \Tra�c and Granular Flow",

1995. to be published.

14. J.T. Pfenning. Beitr�age zum Einsatz von \Workstation Clustern" als

Parallel-Rechner. PhD thesis, University of Cologne, 1994.

15. M. Rickert. Parallel Toolbox 1.0. Technical report, Center for Parallel

Computing, Cologne, Germany, and TSA-DO/SA, Los Alamos National

Lab, USA, 1995.

16. PVM URL. http://www.epm.ornl.gov/pvm/pvm home.html.

17. R. L�uling, B. Monien, and F.Ramme. Load balancing in large networks:

A comparative study. In 3rd IEEE Symposium On Parallel And Dis-

tributed Processing, pages 686{689, 1991.

18. M. Rickert. Estimating parallel e�ciency of large-scale tra�c simula-

tions. in preparation, 1996.

18


