2. Übung Informatik II

Marcus Rickert

30. Dezember 1995

Aufgabe 1

(i)

Die komplementfreie Ringsummennormalform wird durch das Programm RSN.C berechnet. Das Ergebnis, das als LaTex Quellcode vorliegt, wurde hier eingebunden.

$$f = \overline{x_1 x_2 x_3} x_4 \oplus \overline{x_1 x_2} x_3 x_4 \oplus \overline{x_1} x_2 \overline{x_3} x_4 \oplus \overline{x_1} x_2 \overline{x_3} x_4 \oplus x_1 \overline{x_2} x_3 x_4 \oplus x_1 \overline{x_2} x_3 x_4 \oplus x_1 x_2 \overline{x_3} x_4 \oplus x_1 x_2 x_3 \overline{x_4} \oplus x_1 x_2 x_3 x_4$$
$$= x_2 \oplus x_1 x_2 \oplus x_2 x_3 \oplus x_4 \oplus x_2 x_4 \oplus x_1 x_2 x_4 \oplus x_1 x_2 x_3 x_4$$

(ii)

Primimplikanten

Die Primimplikanten werden durch das Programm *PIT.C* berechnet. Das Ergebnis, das als LaTex Quellcode vorliegt, wurde hier eingebunden.

```
f = \overline{x_1} \overline{x_2} \overline{x_3} x_4 \vee \overline{x_1} \overline{x_2} \overline{x_3} x_4 \vee \overline{x_1} \overline{x_2} \overline{x_3} \overline{x_4} \vee \overline{x_1}
                                                                                           \forall x_1 \overline{x_2} x_3 x_4 \lor x_1 x_2 \overline{x_3} x_4 \lor x_1 x_2 x_3 \overline{x_4} \lor x_1 x_2 x_3 x_4
 Q_{4,4} = \emptyset
 Q_{4,3} = \{\overline{x_1}x_2\overline{x_3x_4}, \overline{x_1x_2x_3}x_4\}
 Q_{4,2} = \{x_1 \overline{x_2} \overline{x_3} x_4, \overline{x_1} \overline{x_2} \overline{x_3} x_4, \overline{x_1} \overline{x_2} x_3 x_4\}
 Q_{4,1} = \{x_1 x_2 x_3 \overline{x_4}, x_1 x_2 \overline{x_3} x_4, x_1 \overline{x_2} x_3 x_4\}
Q_{4,0} = \{x_1x_2x_3x_4\}
 Q_{3,3} = \emptyset
 Q_{3,2} = \{\overline{x_1x_2}x_4, \overline{x_1x_3}x_4, \overline{x_2x_3}x_4, \overline{x_1}x_2\overline{x_3}\}
 Q_{3,1} = \{ \overline{x_2} x_3 x_4, x_2 \overline{x_3} x_4, x_1 \overline{x_2} x_4, x_1 \overline{x_3} x_4 \}
 Q_{3,0} = \{x_1x_3x_4, x_1x_2x_4, x_1x_2x_3\}
              P_4 = \emptyset
 Q_{2,2} = \emptyset
 Q_{2,1} = \{\overline{x_3}x_4, \overline{x_2}x_4\}
 Q_{2,0} = \{x_1x_4\}
               P_3 = \{x_1x_2x_3, \overline{x_1}x_2\overline{x_3}\}
 Q_{1,1} = \emptyset
 Q_{1.0} = \emptyset
               P_2 = \{x_1x_4, \overline{x_2}x_4, \overline{x_3}x_4\}
Q_{0,0} = \emptyset
               P_1 = \emptyset
                     P = \{x_1x_4, \overline{x_2}x_4, \overline{x_3}x_4, x_1x_2x_3, \overline{x_1}x_2\overline{x_3}\}
```

Primimplikantentafel

	0001	0011	0100	0101	1001	1011	1101	1110	1111
x_1x_4	0	0	0	0	1	1	1	0	1
$\overline{x_2}x_4$	1	1	0	0	1	1	0	0	0
$\overline{x_3}x_4$	1	0	0	1	1	0	1	0	0
$x_1x_2x_3$	0	0	0	0	0	0	0	1	1
$\overline{x_1}x_2\overline{x_3}$	0	0	1	1	0	0	0	0	0

Es gilt: $s_1 > s_2$, $s_4 > s_3$, $s_5 > s_2$, $s_6 > s_2$ und $s_9 > s_8$. Daher können die Spalten 1,4,5,6 und 9 gestrichen werden. Nach Streichen der Spalten gilt: $z_1 = z_3$ mit gleichen Kosten. Man kann also entweder Zeile 1 oder Zeile 3 streichen. Ich streiche hier Zeile 3, weil diese eine Negation enthält.

Das Minimalpolynom ergibt sich zu:

$$f = x_1 x_4 \vee \overline{x_2} x_4 \vee x_1 x_2 x_3 \vee \overline{x_1} x_2 \overline{x_3}$$

Aufgabe 2

Vollständige Induktion über n:

Verankerung für n=1

Jede beliebige Funktion $f:B\to B$ läßt sich darstellen durch 0,1,x oder $\overline{x},$ also durch $1=2^0=2^{n-1}$ Primimplikanten.

Induktionsschritt $n \rightarrow n+1$

Für jede beliebige Funktion $f:B^{n+1}\to B$ existiert laut Vorlesung eine Darstellung als

$$f(x) = \bigvee_{a \in f^{-1}(1)} m_a(x)$$

Als Monome m_a können die Terme $x_1^{a_1} \cdots x_{n+1}^{a_{n+1}}$ mit $a \in B^{n+1}$ vorkommen. Die Funktionen $\tilde{f}_i : B^n \to B$ mit $i \in \{0,1\}$ definiert durch:

$$\tilde{f}_i(x) := \bigvee_{a \in f^{-1}(1) \land a_{n+1} = i} x_1^{a_1} \cdots x_n^{a_n} \quad (*)$$

können laut Vorraussetzung jeweils durch ein Minimalpolynom $m_i(x)$ dargestellt werden, das höchstens 2^{n-1} Primimplikanten enthält. Wenn p ein Primimplikant von m_0 und q ein Primimplikant von m_1 ist, dann sind $p \wedge \overline{x_{n+1}}$ und $q \wedge x_{n+1}$ Primimplikanten von f. Außerdem gilt wegen (*):

$$f = m_0(x)\overline{x_{n+1}} \vee m_1(x)x_{n+1}.$$

Man hat also eine Darstellung für f gefunden, die höchstens $2^{n-1} + 2^{n-1} = 2^{(n+1)-1}$ Primimplikanten enthält. w.z.z.w.

Aufgabe 3

Vollständige Induktion über n

Verankerung für n=1

Ist klar, denn f(x) = x enthält genau einen Primimplikanten x.

Induktionsschritt $n \rightarrow n+1$

Sei m_n das Minimalpolynom für f_n mit genau 2^{n-1} Primimplikanten. Dann gilt offenbar:

$$f_{n+1}(x) = (m_n(x_1, \dots, x_n) \wedge \overline{x_{n+1}}) \vee (\overline{m_n(x_1, \dots, x_n)} \wedge x_{n+1}) \quad (*)$$

Man hat wie in Aufgabe 2 eine Darstellung für f_{n+1} gefunden, die höchstens $2^{(n+1)-1}$ Primimplikanten enthält. Es bleibt zu zeigen, daß die obige Darstellung nur Primimplikanten enthält. Dies ist äquivalent dazu, daß die Monome der Polynome m_n und $\overline{m_n}$ ganz verschieden sind. Dazu muß man zur ursprünglichen Darstellung von m_n zurückgehen:

$$A := f^{-1}(1) \wedge m_n(x) = f_n(x) = \bigvee_{a \in A} m_a(x)$$

Es folgt, daß $\overline{m_n}$ dargestellt werden kann als:

$$\overline{m_n} = \bigvee_{a \in f-1(0)} m_a(x) = \bigvee_{a \in B^n \setminus A} m_a(x)$$

Daraus geht hervor, daß die Polynome, aus denen m_n und $\overline{m_n}$ als Verkürzungen hervorgegangen sind, nur komplementäre Maxterme enthalten haben. Also kann durch Verkürzung eines Maxterms von m_n nie eine Verküerzung eines Maxterms aus $\overline{m_n}$ entstehen. Daher haben m_n und $\overline{m_n}$ kein Monom und damit auch keinen Primimplikanten gemeinsam. Die Darstellung (*) besteht also nur aus Primimplikanten. w.z.z.w.