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Abstract

We examine a simple two lane cellular automata based upon the single

lane CA introduced by Nagel and Schreckenberg. We point out important

parameters de�ning the shape of the fundamental diagram. Moreover we

investigate the importance of stochastic elements with respect to real life

tra�c.

1 Introduction

In recent times cellular automata based simulations of tra�c 
ow have gained

considerable importance. By extending the range of rules from nearest neigh-

bours to a range of 5 grid sites and introducing 6 discrete velocities 0 : : :5 Nagel

and Schreckenberg [1] have found a striking resemblance of simulation and re-

alistic tra�c behaviour. For v

max

= 1 Schadschneider and Schreckenberg have

found an analytic solution [2]. For higher v

max

, these analytic approaches lead

to good approximations for the average behavior [3]. Further analytic results can

be found in [4]. Nagel [5] pointed out the strong connections between particle

hopping models and 
uid-dynamical approaches for tra�c 
ow.

Much less is known about modelling of multi-lane tra�c. This statement is not

only true for particle hopping models for tra�c 
ow, but for tra�c 
ow theory

in general. Queueing models are not truly multilane, but emulate multiple lanes

by switching the order of vehicles on one lane whenever a passing would have

occurred in reality [7]. Fluid-dynamical models incorporate multi-lane tra�c

only by parametrization [8, 9], although sometimes based on kinetic theory [10].

Traditional car-following theory (see [11]) by and large never dealt with multi-

lane tra�c. Modern microscopic tra�c simulation models (e.g. [12, 13, 14, 15])

obviously handle multi-lane tra�c by necessity. Cremer and coworkers [16, 17]
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even treat multi-lane tra�c in the context of cellular automata models. Yet, all

these papers approach the problem by using heuristic rules of human behavior,

without checking which of these rules exactly cause which kind of behavior. In

validations then (e.g. [15]), it often enough turns out that certain features of the

model are not realistic; and because of the heuristic approach it is di�cult to

decide which rules have to be changed or added in order to correct the problem.

For that reason, a more systematic approach seems justi�ed. Our approach here

is to search for minimal sets of rules which reproduce certain macroscopic facts.

The advantage is that relations between rules and macroscopic behavior can

be more easily identi�ed; and as a welcome side-e�ect one also obtains higher

computational speed.

We again choose particle hopping models as starting point for this investiga-

tion because their highly discrete nature reduces the number of free parameters

even further. It is clear that a similar analysis could be applied to continuous

microscopic models, hopefully bene�ting from the results obtained in this and

following papers.

Nagatani examined a two lane system with completely deterministic rules and

v

max

= 1 [18, 19], where cars either move forward or change lanes. A very

unrealistic feature of this model are states where blocks of several cars oscillate

between lanes without moving forward at all. He corrected this by introducing

randomness into the lane changing [20]. Latour has developed the two lane

model which served as the basis for the one discussed here [22]. Rickert used a

more elaborate rule set for two lane tra�c which reproduced the phenomenon

of increased 
ow with an imposed speed limit [23].

2 Single Lane Model

For the convenience of the reader we would like to outline the single lane model.

The system consists of a one dimensional grid of L sites with periodic boundary

conditions. A site can either be empty, or occupied by a vehicle of velocity

0::v

max

. The velocity is equivalent to the number of sites that a vehicle advances

in one update | provided that there are no obstacles ahead. Vehicles move only

in one direction. The index i denotes the number of a vehicle, x(i) its position,

v(i) its current velocity, v

d

(i) its maximum speed

1

, pred(i) the number of the

preceding

2

vehicle, gap(i) := x(pred(i)) � x(i) � 1 the width of the gap to

the predecessor. At the beginning of each time step the rules are applied to

all vehicles simultaneously (parallel update, in contrast to sequential updates

which yield slightly di�erent results). Then the vehicles are advanced according

to their new velocities.

1

Note that in the original model all vehicles had the same maximum velocity v

max

. We

now allow for di�erent desired velocities v

d

(i) to include a inhomogeneous 
eet

2

A precedes B in this context means that A is followed by B
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� IF v(i) 6= v

d

(i) THEN v(i)  v(i) + 1 (S1)

� IF v(i) > gap(i) THEN v(i) gap(i) (S2)

� IF v(i) > 0 AND rand < p

d

(i) THEN v(i)  v(i) � 1 (S3)

S1 represents a linear acceleration until the vehicle has reached its maximum

velocity. S2 ensures that vehicles having predecessors in their way slow down

in order not to run into them. In S3 a random generator is used to decelerate

a vehicle with a certain probability modelling erratic driver behaviour. The

free{
ow average is v

max

� p

d

(for p

d

6= 1).

3 A Generic Two Lane Model

The single lane model is not capable of modelling realistic tra�c mainly for one

reason: a realistic 
eet is usually composed of vehicles types having di�erent

desired velocities. Introducing such di�erent vehicle types in the single lane

model only results in platooning with slow vehicles being followed by faster

ones and the average velocity reduced to the free{
ow velocity of the slowest

vehicle [21, 24].

We introduce a two lane model

3

consisting of two parallel single lane models with

periodic boundary conditions and four additional rules de�ning the exchange of

vehicles between the lanes. The update step is split into two sub-steps:

1. Check the exchange of vehicles between the two lanes according to the

new rule set. Vehicles are only moved sidewise. They do not advance!

This sub-step is implemented as strict parallel update with each vehicle

making its decision based upon the con�guration at the beginning of the

time step.

2. Perform independent single lane updates on both lanes according to the

single lane update rules. In this sub-step the resulting con�guration of the

�rst sub-step is used.

The most important parameters of the two lane model are as follows:

Symmetry: The rule set de�ning the lane changing of vehicles can be both

symmetric and asymmetric. The symmetric model is interesting for theo-

retical considerations whereas the the asymmetric model is more realistic.

3

Note that the results presented here still concentrate on a single desired velocity only.

The e�ects of di�erent desired velocities will be investigated in future papers.
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Stochasticity: The single lane model proved that a strictly deterministic model

is not realistic: the model did not show the desired spontaneous forma-

tion of jams. In the case of the two lane model the lack of stochasticity in

combination with the parallel update results in strange behaviour of slow

platoons occupying either lane: since none of the vehicles has reached its

maximum velocity and all evaluate the other lane to be better there is

collective change sidewise which is usually reversed over and over again

until the platoon dissolves or the platoon is passed by other vehicles.

We introduce stochasticity into the two lane rule set to reduce the e�ective

number of lane changes and thus dissolve those platoons. The simulation

also revealed that is e�ect is also important in the asymmetric free{
ow

case (see 4.4).

Direction of Causality: In the single lane model a vehicle only looks ahead

(= downstream = in the direction of vehicle 
ow) so that causality can

only travel upstream (= in the opposite direction of vehicle 
ow). A

reasonable lane changing rule must include a check of sites upstream in

order not to disturb the tra�c of the destination lane. This would result

in causality travelling downstream.

A somewhat generic starting point for modeling passing rules is the following:

(T1) You look ahead if somebody is in your way. (T2) You look on the other

lane if it is any better there. (T3) You look back on the other lane if you would

get in somebody else's way. Technically, we keep using gap(i) for the number

of empty sites ahead in the same lane, and we add the de�nitions of gap

o

(i) for

the forward gap on the other lane, and gap

o;back

for the backward gap on the

other lane. Note that if there is a vehicle on a neighbouring site both return -1.

The generic multi-lane model then reads as follows. A vehicle i changes to the

other lane if

� gap(i) < l (T1),

� gap

o

(i) > l

o

(T2),

� gap

o;back

(i) > l

o;back

(T3), and

� rand() < p

change

(T4).

l, l

o

, and l

o;back

are the parameters which decide how far you look ahead on

your lane, ahead on the other lane, or back on the other lane, respectively.

According to the before mentioned characteristics we associate the parameters

of our rule set:

characteristic yes no

symmetry T1 for L!R no T1 for L!R

stochasticity prob

c

< 1 prob

c

= 1

backward causality l

o;back

> 0 l

o;back

= 0
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4 A lane changing model

As an example, we start with l = v + 1, l

o

= l, l

o;back

= 5 = v

max

, and

p

change

= 1. That means that both l and l

o

are essentially proportional to

the velocity, whereas looking back is not: It depends mostly on the expected

velocity of other cars, not on one's own.

In the symmetric version of this model, cars remain on their lane as long as they

don't \see" anybody else. If they see somebody ahead on their own lane (i.e.

gap < v + 1), then they check on the other lane if they can switch lanes and do

so if possible. Afterwards, if they are satis�ed, they remain on this lane until

they become dissatis�ed again.

In the asymmetric version, cars always try to return to the right lane, indepen-

dent of their situation on the left lane.

Space-time-plots both of the symmetric and the asymmetric version are shown

in Figs. 8 and 10. For these plots, we simulated a system with a length of 12,000

sites of which we plot 400 sites in 400 consecutive time-steps. The density is

0.09 which is slightly above the density of maximum 
ow (see below). Vehicles

go from left to right (spatial axis) and from top to bottom (time axis). Tra�c

jams appear as solid areas with steep positive inclination whereas free 
ow areas

are light and have a more shallow negative inclination. Each plot is split into

two parts: The left part containing the left lane and the right part containing

the right lane, respectively.

Note that plot 10 (left lane) gives a good impression of the great number of lane

changes through the high frequency of short vehicle life lines appearing and

disappearing: These are vehicles that temporarily leave the right lane to avoid

an obstacle. They go back to their old lane as soon as the obstacle has been

passed. It will be con�rmed quantitatively that indeed the rate of lane changes

is much higher for the asymmetric model than for the symmetric model.

4.1 Simulation Setup

Before going on, we would like to describe our standard simulations set-up

for the following observations. Note that quantitative simulation results were

obtained with a much larger system than the qualitative space-time plots. We

simulated a system of length

L = 133; 333 sites � 1000 km

with closed boundary conditions, i.e. tra�c was running in a loop. We started

with random initial conditions, i.e. N cars were randomly distributed on both

lanes around the complete loop with initial velocity v

0

= 0.
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Since the system is closed, the average density per lane is now �xed at

h�i

L

=

N

2L

;

where the \2" stands for the number of lanes.

The simulation was then started, 1000 time steps were executed to let the tran-

sients die out, and then the data extraction was started. The 
ow which is

found in the fundamental diagrams is both space and time

4

averaged, i.e.

hji

L;T

=

1

T

1

L

L

X

i

T=5

X

t

v(i; 5t) :

Values for lane change frequency and ping pong lane change frequency (see

below) are obtained by the same averaging procedure except that statistics are

gathered every time step, since by de�nition ping pong lane changes occur in

subsequent time steps.

We usually used T = 5000, and the same procedure was repeated for each

density found in the plots.

4.2 Flow behavior

By comparing these models with each other and with earlier results, we make

the following observations (Fig. 2 unless otherwise noted):

(i) Both for the symmetric and the asymmetric version, maximum
ow is higher

than twice the maximum 
ow of the single lane model (Fig. 1). Which means

that, in spite of the additional disturbances which the lane changing behavior

introduces into the tra�c 
ow, the general e�ects are bene�cial, probably by

diminishing large deviations from \good" 
ow patterns.

(ii) Both for the symmetric and the asymmetric version, the combined 2-lane


ow reaches a maximum at �

jmax

� 0:08, which is at or near a sharp bend of

the 
ow curve.

(iii) For the asymmetric model, 
ow on the left lane keeps increasing slightly

for � > �

jmax

, but this is over-compensated by the decreasing 
ow on the right

lane.

(ii) and (iii) together lead one to the speculation that maximum 
ow in the

asymmetric case here actually is connected to a \critical" 
ow on the right lane

and a \sub-critical" 
ow on the left lane. Any addition of density beyond here

leads to occasional break-downs on the right lane and thus to a much lower


ow there. Obviously, such interpretations would have to be clari�ed by further

4

We gather statistics every �fth time-step only, since subsequent time steps are correlated.
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investigations, and the word \critical" would have to be used with more care,

such as is pointed out in [6] for the single lane case.

(iv) For both lanes combined, the curves for symmetric and asymmetric tra�c

actually look fairly similar. If the above interpretation is right, this means that

the overall density of maximum 
ow is a fairly robust quantity, but one can

stabilize one lane at a much higher density if this density is taken from the

other lane.

(v) At very low densities in the asymmetric case, 
ow on the left lane, j

left

,

only slowly builds up. This is to be expected, since at least two cars have to be

close to each other to force one of them on the left lane, leading to a mean �eld

solution of j

left

(�) � �

2

for � � 0.

(vi) For � > 0:4, 
ows on both lanes in the asymmetric models are fairly similar

and similar to the lane 
ows in the symmetric models.

4.3 Lane changing behavior

To get some further insight into the lane changing dynamics, Fig. 4 shows the

frequency of lane changing both for the asymmetric and the symmetric model.

(i) Note that in the asymmetric case there is a sharp bend in the curve, which is

not found for the symmetric case. This bend is also near �

jmax

, giving further

indication that the dynamics above and below �

jmax

are di�erent.

(ii) For the symmetric case, lane changing occurs with less than half the fre-

quency compared to the asymmetric case.

(iii) In the symmetric case, the lane changing frequency per site for small densi-

ties increases approximately quadratically up to rather high densities, whereas

the same quantity for the asymmetric model grows approximately linearly al-

ready for fairly low densities. This suggests that for the symmetric case a mean

�eld description of interaction, P (change) / �

2

, would be valid up to compara-

bly high densities. For the asymmetric case, it is fairly obvious that this does

not work. Since the vehicles have a strong tendency to be on the right lane,

already a density of 0.04 per lane would be a density of 0.08 if everybody were

on the right lane. Yet, rho = 0:08 is known to be already a density of high inter-

action in single lane tra�c. Since this high interaction tends to spread vehicles

out [2, 3], each additional vehicle simply adds its own share of lane changes,

making the relation roughly linear.

(iv) The maximumnumber of lane changes occurs at densities much higher than

�

jmax

. The lane changing probability per vehicle, however, reaches a maximum

below the critical density (Fig. 5).
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4.4 Ping pong lane changes

An artifact of the so far described algorithm is easily recognizable when one

starts with all cars on the same lane, say the right one. Assuming fairly high

density, then all cars see somebody in front of them, but nobody on the left

lane. In consequence, everybody decides to change to the left lane, so that all

cars end up on the left lane. Here, they now all decide to change to the right

lane again, etc., such that these coordinated lane changes go on for a long time

(�). This e�ect has already been observed by Nagatani for the much simpler

two-lane model [18, 19].

One way around this is to randomize the lane changing decision [20]. The

decision rules remain the same as above, but even if rules T1 to T3 lead to a

yes, it is only accepted with probability p

change

. With this fourth lane changing

rule, patterns like the above are quickly destroyed.

In order to quantify the e�ects of a di�erent p

change

, simulations with p

change

=

0:5 were run. The observations can be summarized as follows:

(i) The 
ow-density curves are only marginally changed (Fig. 3).

(ii) The frequency of lane changes is decreased in general, but, except for � <

�

jmax

in the asymmetric case, by much less than the factor of two which one

would naively expect (Fig. 4). That means that usually there is a dynamic

reason for the lane change, that is, if it is not done in one time step due p

change

<

1, then it is re-tried in the following time step, etc.

(iii) To better quantify in how far a p

change

< 1 actually changes the pattern

of vehicles changing lanes back and forth in consecutive time steps, we also

determined the frequency of \ping pong lane changes", where a car makes two

lane changes in two consecutive iterations. Obviously, there are left-right-left

(lrl) and right-left-right (rlr) ping pong lane changes.

Fig. 6 shows that reducing the probability to change lanes, p

change

, from 1 to 1/2

has indeed a bene�cial e�ect: The number of ping pong lane changes decreases

by about a factor of �ve.

Yet, for the symmetric case, the frequency of ping pong lane changes is more

than an order of magnitude lower in both cases anyway. This indicates that

in simulations starting from random initial conditions, the cooperative e�ect

as described further above in (�) does not really play a role for the statistical

frequency, because the e�ect (�) should be the same for the symmetric and the

asymmetric model. Instead, the cause of the ping pong lane changes in the

asymmetric model is as follows: Assume just two cars on the road, with a gap

of 5 between them. With respect to velocity, both cars are in the free driving

regime, and their velocities will 
uctuate between 4 and 5. Now assume that the

following car has velocity 5 from the last movement. That means that it looks

6 sites ahead, sees the other car, and changes to the left lane. Then, assume

that in the velocity update, the leading car obtains velocity 5 and the following



4.5 Other Parameter Combinations 9

car obtains velocity 4. Then, after the movement step, there is now a gap of

6 between both cars, and in the lane changing step, the follower changes back

to the right lane. And this can happen over and over again in the asymmetric

model, but will not happen in the symmetric model: Once the following car in

the above situation has changed to the left lane, it will remain there until it

runs into another car on the left lane.

To investigate this second kind of ping pong lane changes we ran simulations

recording whether a ping pong lane change was made at low velocities 0 � v � 3

or high velocities 4 � v � 5. Fig. 7 shows a very distinct peak for fast ping{

pong{changes at low densities whereas slow ping{pong{changes have a lower

peak at higher densities similar to that of the symmetric case.

This gives a strong indication that most lane changes are actually caused by

the \tailgating e�ect" as described above, which is an artifact of the rules. It

is, though, to be expected that this behavior does not have a strong in
uence

on the overall dynamics: It mostly happens in the free driving regime; as soon

as, for example, another car is nearby in the left lane, it is suppressed by the

looking back and forward on the other lane.

4.5 Other Parameter Combinations

We would like to mention two other parameter combinations. They are pre-

sented because they generate artifacts which contradict the common sense one

would apply to the phenomena of tra�c 
ow.

(i) In the �rst case the lookahead is reduced to l = v instead of l = v+1. While

this change is negligible for vehicles at higher velocities it becomes crucial to a

vehicles stopped in a jam: assuming the current velocity to be zero the vehicle

looks zero sites ahead and decides to remain in the current lane due to the non{

ful�lled rule T1. This state will persist until the predecessor moves even if the

other lane is completely free! Fig. 12 shows the impact the reduced look ahead

on overall 
ow: for density � > 0:75 there is no perceptible 
ow in the right

lane which corresponds to tra�c jam that occupies more or less the whole right

lane.

(ii) In the second case the look-back is reduced to l

o;back

= 0. Vehicles no

longer check whether their lane changing could have a disadvantageous e�ect

on the other lane which corresponds to a very egoistic driver behaviour. Fig. 13

shows 
ow density relationships for look-back l

o;back

= 5 and l

o;back

= 0. It

is obvious that the decrease in look-back also decreases the maximum 
ow at

critical densities. Moreover l

o;back

= 0 seems to split the curves of the symmetric

and asymmetric cases which used to be almost identical for l

o;back

= 5: the lack

of look-back is much more disadvantageous for asymmetric than for symmetric

rules.

In Figs. 9 and 11 we used l

o;back

= 0 for the symmetric and asymmetric rule
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sets with one plot per lane. It is clearly visible (compare to Figs. 8 and 10)

how l

o;back

= 0 completely disrupts the laminar 
ow regime. Vehicles change

lanes without looking back; and due to the formulation of the model this does

not cause accidents, but causes the obstructed vehicles to make sudden stops.

Since these stops are caused more or less randomly, the regime becomes much

more randomly disturbed than before, somewhat reminiscent of the Asymmetric

Stochastic Exclusion Process (see [3, 5]).

As seen before the e�ect is even more drastic for the asymmetric rule set since

the number of lane changes is higher than in the symmetric case. In Fig. 11

with l

o;back

= 0 dynamics are dominated by small tra�c jams caused by lane

changes, while in Fig. 8 there are still some fairly laminar areas.

5 Discussion

Compared to reality (e.g. [15]), the lane change frequency in the asymmetric

models presented here is by about a factor of 10 too high. Using p

change

= 0:1

would correct this number, but is dynamically not a good �x: It would mean

that a driver follows a slower car in the average for 10 seconds before she decides

to change lanes. Besides, it was shown that about 90% of the lane changes in

the asymmetric models here are produced by an arti�cial \tailgating dance",

where a follower changes lanes back and forth when following another car. It

remains an open question in how far artifacts like this can be corrected by the

current modeling approach or if it will be necessary to, e.g., introduce memory:

If one remembers to just have changed lane from right to left, one will probably

stay on that lane for some time before changing back.

Another defect of the models presented in this paper is that the maximum 
ow

regime is most probably represented incorrectly. Both measurements (e.g. [15]

or Fig. 3.6 in [25]) or everyday observation show that real tra�c shows a \density

inversion" long before maximum 
ow, that is, more cars drive on the left lanes

than on the right lanes. This e�ect is more pronounced for countries with higher

speed limits. Let us denote by �

1lane

jmax

the density of maximum 
ow of the single

lane case. It follows for the real world two lane case that at a certain point

the left lane will have a density higher than this density �

1lane

jmax

whereas the

right lane has a density lower than �

1lane

jmax

. When further increasing the overall

density, then the 
ow on the left lane will decrease whereas it still increases

on the right lane. It is unclear if the net 
ow here increases or decreases; but

it should become clear that instabilities here are caused by the left lane �rst.

This is in contrast to the models of this paper, where the right lane reaches the

critical density �rst. Work dealing with this problem is currently in progress.

Also the e�ect of di�erent maximumvelocities will be addressed in later papers.
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6 Summary and conclusion

We have presented straightforward extensions of the cellular automata approach

to tra�c 
ow so that it includes two-lane tra�c. The basic scheme introduced

here is fairly general, essentially consisting of two rules: Look ahead in your

own lane for obstructions, and look in the other lane if there is enough space.

The 
ow-density relations of several realizations of this scheme have been in-

vestigated in detail; possible artifacts for certain parameter choices have been

pointed out. In general, there seem to be two important lessons to be drawn

from our investigations:

� Checking for enough space on the other lane (\look-back") is important

if one wants to maintain the dynamics consisting of laminar tra�c plus

start stop waves which is so typical for tra�c.

� Especially in countries with high speed limits, observations show a density

inversion near maximum
ow, that is, the density is higher on the left lane

than on the right lane. This e�ect is not reproduced by our models (work

in progress).

Yet, in general, it seems that the approach to multi lane tra�c using simple

discrete models is a useful one for understanding fundamental relations between

microscopic rules and macroscopic measurements.
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Figure 9: symmetric, l

o;back

= 0, left + right lanes

Figure 10: asymmetric, l

o;back

= 5, left + right lanes
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Figure 11: asymmetric, l

o;back

= 0, left + right lanes
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